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Abstract

Contact networks form the substrate along which infectious diseases spread. Most

network-based studies of the spread have only considered the impact of variations in

node degrees. However, a number of other effects such as clustering, variations in in-

fectiousness or susceptibility, or variations in closeness of contacts are expected to play

a significant role. We find analytic techniques to predict how these effects alter the

growth rate, probability, and size of epidemics which we validate for a realistic social

network. We find that (for given degree distribution and average transmissibility) clus-

tering is the dominant factor controlling the growth rate, heterogeneity in infectiousness

is the dominant factor controlling the probability of an epidemic, and heterogeneity in

susceptibility is the dominant factor controlling the size of an epidemic. Edge weights

(measuring closeness or duration of contacts) have impact only if correlations exist

between different edges. Combined, these effects can play a minor role in reinforcing

one another, with the impact of clustering largest when the population is maximally

heterogeneous or if the closer contacts are also strongly clustered. Our results have a

number of implications for design of interventions.

1 Introduction

Recently H5N1 avian influenza and SARS have raised the profile of emerging infectious

diseases. Both can infect humans, but have a primary animal host. Typically such zoonotic
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diseases emerge periodically into the human population and disappear (e.g., Ebola, Hanta

Virus, and Rabies), but sometimes (e.g., HIV) the disease achieves sustained person-to-

person spread. With the advent of modern transportation networks, diseases that in the

past might have emerged in an isolated village and died out without further spread now may

spread worldwide in days or weeks.

A number of interventions are available to control emerging diseases, each with distinct

costs and benefits. To design optimal policies, we must address several related, but never-

theless distinct, questions. How fast would an epidemic spread? How likely is it that a single

introduced infection results in an epidemic? How many people would an epidemic infect?

We quantify these using R0, the basic reproductive ratio, which measures the average number

of new cases each infection causes early in the outbreak; P, the probability that an initial

infection sparks an epidemic; and A, the attack rate, the fraction of the population infected

in an epidemic. Understanding these different quantities and what affects them allows us to

select policies with maximal impact for given cost.

Several different methods have been employed to estimate R0, P, and A. We review

several types of Susceptible-Infected-Recovered (SIR) epidemic models, in which individuals

begin susceptible, become infected by contacting infected individuals, and finally recover with

immunity. Ordinary differential equation (ODE) models were among the earliest models

used [17] and remain the most common. They are deterministic, and so cannot directly

calculate P, but they give insight into the factors controlling R0 and A. Because they assume

mass-action mixing, it is difficult to incorporate the effect of local structure in the population

or individual heterogeneity in the number of contacts. These deficiencies may be corrected

using agent-based simulations [10, 3, 7, 12, 13, 1]. In these simulations, the population is

a collection of individuals who move and contact one another. The modeler has complete

control over the parameters governing interactions and how the disease spreads. This allows

us to study many effects, but introduces many parameters. It is difficult to test the accuracy

of the assumptions used to generate these models and to extract which parameters are

essential to the disease dynamics. The expense of developing these simulations is frequently

prohibitive.

An intermediate level of detail is provided by network models [27, 16, 24, 21, 22, 23,

32, 31, 33, 4] in which the population consists of individuals joined by edges. The disease

spreads stochastically between neighbors. The study of epidemics on networks has focused on

networks with negligibly few short cycles (i.e., no clustering) and a homogeneous population.
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Relatively few papers have considered heterogeneities in infectiousness or susceptibility, and

those that do [25, 24, 33, 18, 16] do not calculate how R0, P, or A change if clustering is

also introduced. Similarly, relatively few papers have considered the impact of clustering,

and those that do [9, 31, 32, 28] ignore heterogeneities.

Recent work by [9] considered the spread of epidemics in a class of random networks for

which the number of triangles could be controlled. It may be inferred from their figure 3 that

clustering can significantly decrease the growth rate and that sufficient clustering can increase

the epidemic threshold. However, at small and moderate levels clustering appears not to

significantly alter the final size of epidemics. At first glance, this contradicts observations

of [31, 32] that clustering significantly reduces the size of epidemics, but that sufficiently

strong clustering reduces the epidemic threshold (an observation also made by [28]), allowing

epidemics at lower transmissibility. The discrepancy in epidemic size may be resolved from

noting that the networks considered by [31, 32] had low average degree. It will be shown in

section 3 that clustering only affects the size if the typical degree is small or clustering is very

high. The apparent discrepancy in epidemic threshold with strong clustering may be resolved

by noting that the form of strong clustering considered by [31, 32] forces preferential contacts

between high degree nodes. The reduction in epidemic threshold is better understood as a

result of degree-degree correlations than a consequence of clustering.

Recently, [25] considered clustered populations with independent heterogeneities in infec-

tiousness and susceptibility. Under weak assumptions on T , and regardless of the network

structure, heterogeneities in infectiousness or susceptibility tend to reduce P and A. The

conditions leading to upper bounds on P and A were shown to be the same for all networks,

but the values of those bounds were not calculated.

We extend this earlier work in a number of ways. We resolve the apparent discrepancies

mentioned above. We develop techniques to incorporate general small-scale structure (not

just the triangles considered in [9]) into the calculation of R0, P, and A based on perturbation

expansions about the results for unclustered networks of the same degree distribution. We

show that this theory accurately predicts epidemic behavior in a more realistic contact

network derived from an agent-based simulation of Portland, Oregon by EpiSimS [7]. We

expand this to investigate the interplay of heterogeneities in individual infectiousness or

susceptibility, variation in edge weights, and clustering in their effect of R0, P, and A.

The paper is organized as follows: Section 2 describes the model and the networks we

study and summarizes earlier work on unclustered networks (adding edge weights to the pre-
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Figure 1: A sample network and several stages of an outbreak. Nodes begin susceptible,

become infected (empty large circles), possibly infecting others along edges, and then recover

(solid large circles). The outbreak finishes when no infected nodes remain.

vious analyses). These unclustered results will be the leading order terms for our expansions

for clustered networks. Section 3 considers how epidemics spread in the (clustered) EpiSimS

network under the assumption of homogeneous transmission. We derive the corrections to

R0 and show that the corrections to P and A are insignificant except when the typical

degree is small. Section 4 considers epidemics spreading with heterogeneous infectiousness

or susceptibility, building on the analysis of section 3. Section 5 extends this analysis fur-

ther to consider epidemics spreading on networks with weighted edges. Edges with large

weights tend to occur in family or work groups and magnify the impact of clustering. Fi-

nally section 6 discusses the implications of our results, including implications for designing

intervention strategies. In general, heterogeneity has a significant impact on P and A, but

not on R0. We find that the impact of clustering on R0 is significant, but clustering has

relatively little effect on P and A except when the average degree is low. Heterogeneity or

edge weights may enhance the impact of clustering.

2 Formulation

2.1 The disease model

We consider the spread of a disease using a discrete susceptible-infected-recovered (SIR)

model [2] on a network G. Nodes of G represent individuals and edges represent (potentially

infectious) contacts. Figure 1 shows an example. A single infection, the index case is chosen

uniformly from the population to begin an outbreak. Infection spreads along an edge from an

infected node u to a susceptible node v with probability Tuv, the transmissibility. The time it

takes for infection and recovery to occur may vary but is not important to our results. Once
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u recovers, it cannot be reinfected. Typically for a large network with N = |G| nodes, the

final size of outbreaks is either large, with O(N) cumulative infections, or small, with O(1)

infections. Large outbreaks are epidemics and small outbreaks are non-epidemic outbreaks.

2.1.1 Transmissibility

A number of factors influence the transmissibility from u to v such as the viral load and

duration of infection of u, the vaccination history and general health of v, the duration and

nature of the contact between u and v, and the characteristics of the disease.

For each node u we denote all quantities influencing its ability to infect others by Iu

and all quantities affecting its ability to be infected by Su. We assume that these are

assigned independently of one another and of all other nodes. Each edge has a weight wuv

describing the duration and nature of contact. Finally the parameter α measures disease-

specific quantities. In general these parameters may be vectors, but usually they are taken

to be scalars. In most of our calculations we take them to be scalars and follow [24, 6],

setting

Tuv = T (Iu,Sv, wuv) = 1 − exp(−αIuSvwuv) . (1)

This particular form describes the probability of transmission from an individual who sheds

a total amount Iu of virus (a fraction α of which reaches each contact) to an individual v

who is in contact with u for a fraction wuv of the time and is infected at rate S per viable

virus particle encountered. If we assume all contacts are identical, then wuv may be absorbed

into α and we have

Tuv = T (Iu,Sv) = 1 − exp(−αIuSv) . (2)

Note that Tuv is a number assigned to an edge, while T (Iu,Sv) is a function which states

what the transmissibility between two nodes would be if they shared an edge.

We denote the probability density functions (p.d.f.s) of I, S, and w by P (I), P (S), and

P (w) respectively. Although we assign I and S independently, we allow w to be assigned

either independently or based on observed contacts. If w is independently distributed, then

it is possible to eliminate edge weights by marginalizing over the distribution of weights.

However, if weights are not independently distributed (for example work or family contacts

tend to have correlated weights) then the details of the distribution and the correlations will

be important.
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Given the infectiousness Iu of node u, we follow [24, 25] and define the out-transmissibility

of u to be

Tout(u) =

∫∫

T (Iu,S, w)P (S)P (w) dS dw . (3)

This is the marginalized probability that u infects a randomly chosen neighbor given Iu. If

w is fixed, this becomes

Tout(u) =

∫

T (Iu,S)P (S) dS . (4)

From the definition of Tout and the p.d.f. P (I) we can calculate the p.d.f. Qout(Tout). We

symmetrically define the in-transmissibility Tin and its p.d.f. Qin(Tin).

The average transmissibility 〈T 〉 is given by

〈T 〉 =

∫∫∫

T (I,S, w)P (I)P (S)P (w) dI dS dw . (5)

2.1.2 Epidemic percolation networks

Rather than studying outbreaks as dynamic processes on networks, we may consider them in

the context of Epidemic Percolation Networks (EPNs) [15, 25]. One realization of an EPN

E is created as follows: We place each node of G into E . For each edge {u, v} in G we place

directed edges (u, v) and (v, u) into E with probability Tuv and Tvu respectively. The nodes

infected in an outbreak correspond to those nodes which may be reached from the index

case following edges of E . More specifically, the distribution of out-components of a node u

in different EPN realizations matches the distribution of outbreaks resulting from different

epidemic realizations in the original model with u as the index case. From this we conclude

that the distributions of out-component and in-component sizes give us information about

the probability of a node to start an epidemic or become infected in an epidemic. Compared

with repeated simulations, EPNs have several advantages: A single EPN provides an accurate

measure of the probability and size of epidemics rather than requiring many simulations to

calculate the probability. They also give a theoretical framework to study epidemics as static

objects.

Once we have created an EPN and chosen the index case, we may clearly define the

generation of a node as the length of the shortest directed path from the index case to the

node. If no such path exists, the node is not infected.

If the system is above the epidemic threshold, then E will have a giant strongly connected

component Gscc [5]. The set of nodes (including Gscc) from which Gscc may be reached
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following the directed edges is the giant in-component Gin. We symmetrically find Gout to

be the set of nodes reachable from Gscc. Note that Gscc = Gin ∩Gout. If the initial infection

is in Gin, then an epidemic occurs, and all nodes in Gout become infected. Thus the size of

Gin relates to the probability of an epidemic and the size of Gout relates to the size of an

epidemic. An immediate consequence of the EPN formalism is that if the direction of arrows

are interchanged, then P and A are interchanged. This means that if we can calculate the

probability of an epidemic, then the size may be calculated by the same technique, but with

the direction of infection reversed. More details are provided in [15, 25] and appendix A.

Because of this fact, we focus our attention on calculating P, and simply apply the same

methodology to calculate A.

2.1.3 The basic reproductive ratio

The typical definition of the basic reproductive ratio R0 is the average number of new in-

fections caused by a single infected individual introduced into the population, which gives

R0 = 〈T 〉 〈k〉. We expect that epidemics are possible if and only if R0 > 1, that is if an

average person causes more than one new case, an epidemic may occur, while if the average

person causes fewer than one new case, the outbreak must die out quickly. However, this

expectation of R0 is not consistent with the typical definition. A more appropriate defini-

tion is the average number of new infections caused by an infected individual early in the

outbreak. The distinction is subtle, but results from the fact that whether an outbreak can

grow depends on whether the people infected in early generations infect more than one per-

son each [8]. The average infected individual may look different from the average individual.

Most obviously, the average infected individual has more contacts [11], but may also have a

disproportionately large fraction of its neighbors infected or recovered.

In order to quantify this more rigorously, we define the generational reproductive ratio

R0,g =
E[Ng+1]

E[Ng]
(6)

to be the expected number of new cases caused by a node in generation g (where the expec-

tation is taken over all possible realizations). Then R0,0 = 〈T 〉 〈k〉 corresponds to the usual

definition of R0. In practice, we find that R0,g reaches a plateau quickly as g increases before

eventually decreasing as the finite size of the population becomes important. Consequently,

a more meaningful definition of R0 is the limit of R0,g as g grows, subject to the assumption
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that G is large enough that R0,g is unaffected by the finite size of G. This gives

R0 = lim
g→∞

lim
|G|→∞

R0,g . (7)

This generalizes the definition of R0 given by [8] for ODE models. A similar definition was

used by [33] for network models. Under this definition, epidemics are possible if R0 > 1, but

not if R0 < 1. We discuss this definition further in Appendix B.

2.1.4 The networks

We consider two different types of networks. The first is a class of random network for which

we can derive analytic results. The second is a more complicated network resulting from an

agent-based simulation.

We are interested in understanding the impact of clustering on the spread of a disease.

The term itself is rather vague, and is usually measured based on the number of triangles in

a network [34]. However, in general, any short cycles can impact the spread of an infectious

disease. For our purposes we may think of a clustered network as a network with enough

short cycles to impact the dynamics of the disease.

Our random networks are Configuration Model [29] (also called Molloy–Reed [26]) net-

works. These networks are maximally random given the degree distribution. As the number

of nodes in a Configuration Model network grows, the frequency of short cycles becomes

negligible.

The agent-based network is from an EpiSimS [7, 10, 3], simulation of Portland, Oregon.

The simulation of Portland includes roads, buildings, and a statistically accurate (based on

Census data) population of approximately 1.6 million people who perform daily tasks based

on population surveys. This gives a highly detailed understanding of the interactions in the

population. The degree distribution and contact structure emerges from the simulation. The

resulting network has significant clustering and average degree of about 16. More details are

in Appendix C.

2.2 Epidemics in unclustered networks

We briefly review previous work for epidemic spread in Configuration Model networks.

These are the simplest networks to investigate, and so the theory has been developed fur-

ther [27, 22, 16, 24, 30, 20] than for other networks. See [25, 31] for some discussion of more

8



arbitrary unclustered networks.1 We extend the earlier theory by allowing edge weights to

be independently assigned from a probability distribution.2

2.2.1 The basic reproductive ratio

Early in the spread of an infectious disease on a Configuration Model network, the probability

of a node becoming infected is proportional to its degree, and so the p.d.f. for the degree

of infected nodes is kP (k)/ 〈k〉. We choose an infected node u uniformly from generation

g with degree ku. If the network is large enough that we can ignore short cycles, then all

of u’s neighbors are susceptible except the node which infected u. Thus u may infect up

to ku − 1 neighbors. The probability Tout(u) that u will infect a randomly chosen neighbor

is chosen from Qout(Tout), and so the probability u infects exactly j ≤ ku − 1 neighbors is
(

ku−1

j

)

Tout(u)j[1 − Tout(u)]ku−1−j. Integrating this over possible values of Tout and summing

over ku and j, we find that for g > 0 the generational reproductive ratio is

R0,g =
1

〈k〉

∞
∑

k=1

(

kP (k)

k−1
∑

j=0

j

∫
(

k − 1

j

)

T j
out(1 − Tout)

k−1−jP (Tout)dTout

)

= 〈T 〉
〈k2 − k〉

〈k〉
,

and so

R0 = 〈T 〉
〈k2 − k〉

〈k〉
(8)

Thus we find that for unclustered networks3 R0 6= R0,0 = 〈T 〉 〈k〉.

2.2.2 Probability and size

We look for the probability that a single infected node causes a chain of infections leading

to an epidemic. Because interchanging edge direction in an EPN interchanges P and A, we

may focus on calculating P. Equivalent techniques replacing Tout by Tin below give A. Our

analysis is performed in the limit of an infinite network.

1Perhaps the most significant result for non-Configuration Model networks is that if the higher degree

nodes preferentially contact other high degree nodes, then the threshold transmissibility for an epidemic is

reduced.
2If edge weights are not assigned independently, then infection along different edges is not independent,

and the methods of this section do not apply.
3Unless the degree distribution satisfies

〈

k
2 − k

〉

= 〈k〉
2
. The best-known such networks are Erdős–Rényi

networks which have a Poisson degree distribution in the limit of large network size.
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We set f to be the probability a randomly chosen index case does not start an epidemic.

We find

f =
∑

k

(

P (k)

∫

Tout

[1 − Tout + Touth]kP (Tout)dTout

)

, (9)

where h is the probability a randomly chosen secondary case does not start an epidemic.

The value of h satisfies the recurrence relation

h =
1

〈k〉

∑

k

(

kP (k)

∫

Tout

[1 − Tout + Touth]k−1P (Tout) dTout

)

. (10)

If R0 < 1, the trivial solution f = h = 1 is the only solution. For R0 > 1 an additional

solution appears and is the physically relevant root. From this we can calculate P = 1 − f .

Note that P depends on the distribution of Tout, but is not affected by the distribution

of Tin. Similarly, A depends on the distribution of Tin but is not affected by the distribution

of Tout. This result holds for unclustered, but not for clustered, networks.

If we define f̂(x) =
∑

pix
i where pi is the probability that the outbreak ends with exactly

i nodes infected in an infinite network, then we arrive at similar equations to (9) and (10)

except that f and h are replaced by f̂(x) and ĥ(x) and the right hand side of equation (10) is

multiplied by x. These probability generating functions have been used extensively [27, 22, 16]

to investigate outbreaks. Note that f̂(1) =
∑

pi is the probability that the outbreak is finite,

which is equivalently the probability of a non-epidemic outbreak.

2.2.3 Summary

We have shown that for Configuration Model networks, R0 = 〈T 〉 〈k2 − k〉 / 〈k〉. In particular

it depends only on the network properties and the average transmissibility. In contrast, the

probability and size are affected by the details of the distribution. Intuitively, this is easy to

understand. For example, if we consider the size of epidemics in populations with varying

Tin, at early times the rate of growth is governed by the average number of new infections

created, which depends on the average transmissibility. However, a disproportionate number

of highly susceptible nodes are infected, and so the average Tin of remaining nodes drops.

By the end of the epidemic nodes are much harder to infect than they would have been if

all were equally susceptible initially, and so the epidemic infects fewer people.

A consequence of this is that we cannot predict the final size of an epidemic based on

the early growth rate. Although this is frequently done (see for example [19] and references

therein), these calculations usually assume that the population is homogeneously susceptible,
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which is not always the case, particularly when a vaccine or previous exposure to similar

diseases exists.

3 Epidemics in clustered networks with homogeneous

transmissibility

In this section we assume that transmissibility does not vary, and so Tuv = T for all edges. It

follows that P = A [27, 24]. We perform our simulations on the EpiSimS network, treating

all contacts as equal.

3.1 The basic reproductive ratio

The simulated generational reproductive ratio R0,g is shown in figure 2 for 0 ≤ g ≤ 4. At

all values of T , R0,0 = T 〈k〉 is clearly distinct from the other curves. For g > 0, R0,g is

asymptotic to the unclustered approximation T 〈k2 − k〉 / 〈k〉 as T → 0. This is because at

small T , the effects of short cycles are negligible, and so the dominant effect is that higher

degree nodes are preferentially infected and in turn infect more neighbors. As T increases,

R0,4 peels away from R0,1, R0,2, and R0,3. This occurs because the population is finite, and

so the number of susceptibles available to infect after four generations is reduced. In a larger

population, R0,4 would not deviate.

We conclude that R0,g converges quickly, and that R0,1 is a good approximation to

R0. This implies that the network does not have enough important structure contained in

paths of length at least 3 to affect growth noticeably. This fortunate observation allows us

to approximate R0 by calculating R0,1, which we may do exactly with relative ease (R0,g

becomes combinatorially hard to calculate as g grows). To find R0,1 = E[N2]/E[N1] we first

note that E[N1] = T 〈k〉. The value of E[N2] is more difficult to find: consider all pairs of

nodes u and v such that there is at least 1 path of length 2 between them as in figure 3. Let

nuv be the number of paths of length 2 between u and v and χuv be an indicator function:

χuv = 1 if {u, v} is an edge and χuv = 0 if it is not. The probability that an infection of u

results in infection of v in exactly two generations is [1 − (1 − T 2)nuv ][1 − T ]χuv . Summing

this probability over all possible pairs yields

E[N2] =
1

N

∑

u,v

[1 − (1 − T 2)nuv ][1 − T ]χuv ,

11



Figure 2: Simulated values of the generational reproductive ratio R0,g = E[Ng+1]/E[Ng]

for g = 0, . . . , 4 using the EpiSimS network, compared with the unclustered prediction.

Convergence is quick. At small T (right panel) the asymptotic behaviors of R0,1–R0,4 match

the unclustered prediction.
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Figure 3: Different options for paths of length two.

which allows us to calculate R0,1 exactly. This is not difficult to calculate, but if T is small,

we can gain a better understanding of the impact of the network structure by using a small

T expansion. We may approximate E[N2] for T ≪ 1 by

E[N2] =
1

N

∑

u,v

T 2nuv(1 − T )χuv −

(

nuv

2

)

T 4 + O(T 5) ,

= T 2
〈

k2 − k
〉

− 2T 3 〈n△〉 − T 4 〈n�〉 + O(T 5) ,

where n△ is the number of triangles containing a given node, and n� is the number of squares

containing a given node (cf, [14]). The higher order terms involve more complicated shapes.

This gives

R0,1 =
〈k2 − k〉

〈k〉
T −

2 〈n△〉

〈k〉
T 2 −

〈n�〉

〈k〉
T 3 + O(T 4) . (11)
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Figure 4: Comparison of first three asymptotic approximations for R0,1 from equation (11)

with the exact value (solid) for the EpiSimS network. The first approximation is based only

on the degree distribution, the second adds in the effect of triangles, and the third adds in

the effect of squares. The next order approximation would add in pairs of triangles sharing

an edge. The right panel shows the comparison at small T .

At leading order this recovers the unclustered prediction in equation (8), reflecting the fact

that at small values of T the probability that the outbreak follows all edges of a cycle is

negligible. As T increases, the first corrections are due to triangles, then squares, then pairs

of triangles sharing an edge, and sequentially larger and larger structures made up of paths of

length two. A comparison of these approximations with the exact value is shown in figure 4.

Although we have defined R0 for an ensemble of realizations, we see in figure 5 that

R0,1 predicts the observed ratio Ng+1/Ng for individual simulations once the outbreaks are

well-established. Early in the course of outbreaks, the behavior is dominated by stochastic

effects, and so the ratio of successive generation sizes is noisy. Once the outbreak has grown

large enough, random events become unimportant and the ratio settles at R0,1. The early

noise controls how long it takes for the outbreaks to become epidemics, and so the epidemic

curves appear to be time translations.4

4We note that it is common to consider the temporal average of a number of outbreaks. However, prior

to performing such an average, the curves should be shifted in time so that they coincide once the stochastic

effects are no longer important. Failure to do so means that random events early in the outbreak dominate

the apparent dynamics even after they no longer affect the spread. Averaging a number of identical curves

which are simply shifted in time underestimates the early growth, peak incidence, and late decay while

it overestimates the duration of the epidemic. This can lead to an incorrect understanding of “typical”

outbreaks.
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(a) T = 0.1

(b) T = 0.2

Figure 5: The progression of ten epidemics for (a) T = 0.1 and (b) T = 0.2 in the EpiSimS

network. The left panels show Ng+1/Ng against generation and right panels show the cumu-

lative fraction of the population infected.

3.2 Epidemic probability and size

In the previous section, we found that the effect of clustering on the growth rate of an

epidemic can be significant. In this section we analyze how the probability and size are

affected by clustering.

We begin by using our R0 results to analyze the impact of clustering on the epidemic

threshold. We set T0 = 〈k〉 / 〈k2 − k〉 to be the threshold for the unclustered approximation

and T0(1 + δT/T0) to be the threshold found by including the correction due to triangles to
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R0,1 from equation (11). We may show that

δT

T0

=
2 〈n△〉 〈k〉

〈k2 − k〉2
+ O

(

[

2 〈n△〉 〈k〉

〈k2 − k〉2

]2
)

. (12)

If δT/T0 is not small, then clustering affects the epidemic threshold. For a given node u,

the number of triangles containing it is at most (k2 − k)/2, so 2 〈n△〉 / 〈k2 − k〉 ≤ 1, and

so if 〈k〉 / 〈k2 − k〉 is small, triangles do not alter the epidemic threshold. For the EpiSimS

network, 2 〈n△〉 〈k〉 / 〈k2 − k〉
2

takes the value 0.016, and so we do not anticipate clustering

to play an important role in determining the threshold.

In order to make more general statements, we need a deeper understanding of the impact

of small-scale structures on epidemic probability. Let us assume that the probability of an

epidemic may be expanded much like (11) about the unclustered approximation as

P = P0 + P1 〈n△〉 + P2 〈n△〉
2 + · · · + Q1 〈n�〉 + · · · (13)

Note that the asymptotic expansion for R0,1 only required information about nodes of dis-

tance at most two from the index case. However, the probability of an epidemic may depend

on effects occurring at larger distance, and so the full expansion has many additional terms.

The larger a structure is, the smaller its corresponding coefficient is expected to be. The

linear coefficient for triangles P1 may be found by

P1 〈n△〉 = −
1

N

∑

u∈G

∑

△∈G

p̂△(u)

where p̂△(u) is the probability that a given triangle prevents an epidemic if u is the index

case. Note that for the linear coefficients, we do not have to consider interactions of multiple

short cycles. Reversing the order of summation we get

P1 〈n△〉 = −
1

N

∑

△∈G

∑

u∈G

p̂△(u) = −
N△

N

〈

∑

u∈G

p̂△(u)

〉

△

= −
1

3
〈n△〉

〈

∑

u∈G

p̂△(u)

〉

△

where N△ is the number of triangles in G and 〈·〉△ is the average of the given quantity taken

over all triangles. Thus it follows that

P1 = −
1

3

〈

∑

u∈G

p̂△(u)

〉

△

Consequently, we can estimate P1 by considering the average effect of a single triangle in an

unclustered network. We separately calculate the impact of a triangle on the probability of
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Figure 6: Breaking one edge of a triangle allows more infections.

an epidemic if the index case is part of the triangle and if the triangle is separated by a path

of some length from the index case.

Let us consider a triangle with nodes u, v, and w. We begin by assuming u is the index

case. The triangle can affect the probability of an epidemic only if the infection tries to cross

all three edges, that is, if the infection process ‘loses’ an edge because of clustering. This

may happen in three distinct ways. In the first, node u infects both v and w, and then v

and/or w tries to infect the other. In the second u infects v but not w, then v infects w, and

finally w tries to infect u. The third is symmetric to the second, with u infecting w.

Because we can ignore the impact of any other short cycles, the probability that an edge

leading out of u (not to v or w) will not cause an epidemic is q = 1 − T + Th, where h (as

before) is the probability that a randomly chosen secondary case does not cause an epidemic

in an unclustered network5 and can be calculated using equation (10). The intuition for the

remainder of our argument is that if q is not large, then some other edge besides the ‘lost’

edge would manage to start an epidemic anyway, while if q is large, then the lost edge is

unlikely to start an epidemic. Regardless, the effect of the lost edge is insignificant.

To make this argument more rigorous, we begin with the first case: u infects both v and

w. Assume that u has degree ku, v has degree kv, and w has degree kw. The probability that

u infects both v and w without some other edge leading from u, v, or w starting an epidemic

5We could consider a similar expansion for h in terms of the network structure, but the leading order

(unclustered) term of h would be the only term to influence P1.
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is T 2qku+kv+kw−6. If the {v, w} edge were broken and v and w were joined to other nodes

(see figure 6), then the new probability of u to infect both v and w without an epidemic

becomes T 2qku+kv+kw−4. The change in probability is T 2qku+kv+kw−6(1 − q2). If the sum of

ku + kv + kw is moderately large, then either qku+kv+kw−6 ≪ 1 or 1 − q2 ≪ 1. Thus the

triangle has little impact on the epidemic probability in this case. Similar analysis applies

to the other two cases where the w to u or v to u infections are lost. Provided the typical

sum of degrees in triangles is relatively large, the probability of an epidemic when the index

case is in the triangle is not impacted significantly.

If the index case is not part of the triangle, then the above analysis is modified because we

must also consider each node in the path from the index case to the triangle. This increases

the exponent on T and significantly increases the exponent on q. Summing this effect over

all possible index cases yields a negligible contribution. Consequently, provided the average

degree is not small, the impact of clustering on epidemic probability is small.

In contrast, in a network with small average degree and a significant number of triangles

this becomes significant. This explains observations of [32, 31] who consider networks with

average degree less than 3 and find that clustering significantly alters epidemic size.

In general, we expect that if the average degree is large, then the various coefficients of the

correction terms will all be small. However, there are a number of obvious counter-examples:

consider a network made up of isolated cliques with Nc nodes. In expansion (13), the

coefficient for cliques of Nc nodes will not be small. Consequently care must be taken when

using such an expansion to ensure that neglected terms resulting from larger scale structures

are in fact negligible. For social networks, we expect this highly segregated situation to be

unimportant.

This argument suggests that clustering is only important for the size and probability of

epidemics if the typical degrees of nodes in the network along which the disease spreads are

low. Such networks cannot have large values of R0, and so a consequence of these results is

that if R0 is moderately large, then the probability and final size are effectively unaffected

by clustering. If R0 is small, however, clustering may play a role in determining the final size

and probability, but only if the typical degrees are small and the transmissibility is large.

We now use the EpiSimS network to test the predictions provided by the asymptotic

analysis. Typical degrees in the network are not small, and as anticipated, figure 7 shows

that clustering has little effect on epidemic probability and size.
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Figure 7: Probability P of epidemics for the EpiSimS network (+) versus T , compared to

the prediction derived from the degree distribution assuming no clustering. Because T is

homogeneous, this also gives A.

4 Epidemics in clustered networks with heterogeneous

transmissibility

When we drop the assumption of homogeneous transmissibility, the disease spread becomes

more complicated. If a node infects a neighbor, then the a posteriori expectation for its

out-transmissibility becomes higher: it is likely to infect more neighbors. This accentuates

the effect of short cycles, enhancing the impact of clustering on R0, P, and A.

In this section we investigate how varying the infectiousness and susceptibility of nodes

in the EpiSimS network enables clustering to alter the values of P and A. We will make

use of the ordering assumption and its consequences from [25]. Simply put, the assumption

states that if u1 is “more infectious” than u2 or v1 “more susceptible” than v2 then u1 is

always more infectious than u2 and v1 always more susceptible than v2. More specifically,

the ordering assumption states that if Tout(u1) > Tout(u2), then T (Iu1
,S) ≥ T (Iu2

,S) for all

S. The symmetric statement applies if Tin(v1) > Tin(v2). The results of [25] show that if the

ordering assumption holds, heterogeneity tends to reduce P and A, and the upper bounds
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Symbol P (I) P (S)

δ(I − 1) 0.5δ(S − 0.001) + 0.5δ(S − 1)

0.3δ(I − 0.001) + 0.7δ(I − 1) δ(S − 1)

0.5δ(I − 0.1) + 0.5δ(I − 1) 0.2δ(S − 0.1) + 0.8δ(S − 1)

0.5δ(I − 0.1) + 0.5δ(I − 1) 0.8δ(S − 0.01) + 0.2δ(S − 1)

Table 1: The distributions of I and S for most calculations in this section and section 5.

The function δ is the Dirac delta-function.

on P and A correspond to homogeneous populations.

For simulations in this section, we consider five different cases. In the first four, we use

equation (2) so that Tuv = 1 − exp(−αIuSv) with the distribution of I and S varying for

each. We will denote these by symbols shown in table 1. We vary the value of α to change

the average transmissibility 〈T 〉.

In the fifth case the out-transmissibility is maximally heterogeneous: A fraction 〈T 〉 of

the population infect all neighbors, while the remaining 1 − 〈T 〉 infect no neighbors. The

out-transmissibility is either 0 or 1, but the in-transmissibility of all nodes is 〈T 〉. This gives

a lower bound on P in a homogeneously susceptible population [33]. It is hypothesized to

remain a lower bound on P if susceptibility is allowed to vary. However, in unclustered

populations, this distribution is one of many leading to the upper bound on A [25]. We

could also consider extreme heterogeneity in susceptibility, but the results for P and A

merely correspond to interchanging the values for extreme heterogeneity in infectiousness,

and so we do not need to consider it directly.

4.1 The basic reproductive ratio

In figure 8 we plot the simulated generational reproductive ratio R0,g for 0 ≤ g ≤ 4 for

the cases of table 1. For g > 0, R0,g is again asymptotic to the unclustered approximation

as 〈T 〉 → 0. In contrast with the unclustered case, heterogeneity impacts the growth rate.

There are small kinks for and at 0.5 and 0.7 respectively, resulting from the nature of

those distributions. The impact of the heterogeneities on R0 is best understood as acting to

enhance the effect of clustering. Note that R0,1 remains a good approximation to R0.

As before, we can calculate R0,1 analytically. If the ordering assumption holds, we may
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Figure 8: R0,g = E[Ng+1]/E[Ng] calculated from simulations for the heterogeneous examples

of table 1.

use a simplified notation T (Tout, Tin) to denote the transmissibility between nodes with Tout

and Tin. If it fails, similar results will hold, but the notation becomes more cumbersome.

We have E[N1] = 〈T 〉 〈k〉 and

E[N2] =
1

N

∑

u,v

∫∫

[1 − (1 − ToutTin)nuv ][1 − T (Tout, Tin)]
χuvQout(Tout)Qin(Tin)dToutdTin

=
〈

k2 − k
〉

〈T 〉2 − 2 〈n△〉 〈ToutTinT (Tout, Tin)〉 − 〈n�〉
〈

T 2

out

〉 〈

T 2

in

〉

+ · · · ,

and so we may express the growth rate as a perturbation about the unclustered case

R0,1 =
〈k2 − k〉

〈k〉
〈T 〉 −

2 〈n△〉

〈k〉

〈ToutTinT (Tout, Tin)〉

〈T 〉
−

〈n�〉

〈k〉

〈T 2
out〉 〈T

2
in〉

〈T 〉
+ · · · . (14)

Note that 〈ToutTinT (Tout, Tin)〉 achieves its minimum 〈T 〉3 when T is homogeneous. It

achieves its maximum 〈T 〉2 either when

Qout(Tout) = (1 − 〈T 〉)δ(Tout) + 〈T 〉 δ(Tout − 1) , (15)
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Figure 9: The left panel shows R0,g for maximal heterogeneity in out-transmissibility as

in equation (15). R0,1 remains a good approximation. The right panel compares R0,1

for a homogeneous population, a maximally heterogeneous population, and the unclustered

approximation.

that is, when the out-transmissibility is maximally heterogeneous, or when the in-transmissibility

is maximally heterogeneous

Qin(Tin) = (1 − 〈T 〉)δ(Tin) + 〈T 〉 δ(Tin − 1) . (16)

This suggests that the maximum growth rate occurs in a homogeneous population, while the

minimum growth rate occurs in a population with maximally heterogeneous infectiousness

or susceptibility. The two minima for R0,1 are also hypothesized to give lower bounds on

the epidemic probability and the size respectively [25].

We note that in the maximally heterogeneous case, the correction term in (14) is signifi-

cant at leading order in T . Consequently, if 〈n△〉 is comparable to 〈k2 − k〉 /2 (that is, the

clustering coefficient [34] is comparable to 1), the threshold value of 〈T 〉 may be increased

by clustering.

We focus on R0 for maximally heterogeneous infectiousness in figure 9. We see that

R0,1 remains a good approximation to R0. At small values of 〈T 〉, the heterogeneity causes

clustering to have a larger impact than in a homogeneous population as seen in the right

panel of figure 9. The correction is important at leading order in 〈T 〉. At larger values of

〈T 〉 the heterogeneous and homogeneous growth rates are similar.
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Figure 10: Comparison of the probability and size observed from simulations in the clustered

EpiSimS network with heterogeneities (symbols) with that predicted by the unclustered

theory (curves). We take Tuv to be as in equation (2) using table 1. Each data point is based

on a single EPN.

4.2 Probability and size

The effect of clustering on P and A is modified by heterogeneities. In unclustered networks,

P is independent of Qin(Tin), but this is no longer true in clustered networks [25]. Symmetric

statements apply to A. We expect, however, that in a network with sufficiently large average

degree, the impact of clustering should again be small, and so P is dominated by Qout and

A is dominated by Qin.

The arguments we apply are similar to those we used for homogeneous transmissibility.

The reasoning becomes more difficult because knowledge that u infects v may increase the

expectation that u infects w. Consequently the lost edges in triangles are more frequently

encountered by the outbreak. However, the knowledge that u infects v also increases the

expectation that u infects its other neighbors. In order for a triangle to prevent an epidemic

we need both that no edge outside the triangle leads to an epidemic and that the lost edge

would otherwise have caused an epidemic. If the typical degree of the network is not small,

then the fact that the lost edge is encountered more frequently may be offset by the fact that

when it is encountered, other edges may also spread infection. In figure 10 we see that the

predictions based on the unclustered theory provide a good estimate of epidemic probability

and size in the clustered EpiSimS network.

In the extreme case where nodes infect all or none of their neighbors, the effect of different

triangles that share the index case cannot be separated as easily. The probability the index
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Figure 11: The probability and size of epidemics in the case of extreme heterogeneity in in-

fectiousness (symbols) compared with the unclustered prediction (curves). Note that these

become the size and probability respectively in the case of extreme heterogeneity in suscep-

tibility.

case directly infects a set of m nodes of interest is 〈T 〉, rather than Tm. Thus expansions

as in equation (13) do not work as well: terms that were previously higher order become

significant. Close to the epidemic threshold, this can play an important role. However, well

above the epidemic threshold, if the index case infects all of its neighbors, an epidemic is

almost guaranteed and so P ≈ 〈T 〉 regardless of whether the network is clustered. Thus in

the case of extreme heterogeneity in infectiousness, clustering affects probability only close

to the epidemic threshold, as seen in figure 11.

In the opposite extreme case where nodes would be infected by any neighbor or else no

neighbor, the values of P and A are interchanged. Because of this, the right panel of figure 11

shows that for maximally heterogeneous susceptibility the probability could be significantly

altered close to the threshold. The reason for this is as follows: For the first generation the

outbreak spread is indistinguishable from the spread of a homogeneous outbreak. However,

when first generation infections attempt to infect their neighbors, they cannot infect any

of the neighbors of the index case. In contrast, in the homogeneous case, any neighbor

not infected by the index case would be susceptible in later generations. Consequently, the

impact of triangles becomes much more important (by a factor of 1/ 〈T 〉) and our earlier

argument for neglecting them fails. The interaction of extreme heterogeneity with clustering

in this case is larger, but it nevertheless becomes unimportant far from the threshold.

Our prediction that heterogeneity allows clustering to be more significant close to the
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threshold is borne out for in figure 10 where there is relatively strong heterogeneity in

susceptibility just above the epidemic threshold. The epidemic threshold for is increased

compared to the other cases. In contrast there is much stronger heterogeneity in susceptibility

for at 〈T 〉 = 0.5 and in infectiousness for at 〈T 〉 = 0.7. This results in a reduction in

size and probability respectively, but because it is far from threshold, there is little deviation

from the unclustered predictions.

5 Epidemics in clustered networks with weighted edges

When we allow edges to be weighted, new complications arise. The weights we use in

our simulations are the durations of contacts from EpiSimS. If the weights were assigned

independently of one another, then we could simply take Tuv =
∫

T (Iu,Sv, w)P (w) dw.

However, edge weights are not independently assigned: most notably contacts within homes

or workplaces tend to be closer and so short cycles tend to have larger weights. If brief

contacts are negligible, then the disease spreads along a network with a comparable number

of short cycles to the original, but lower typical degree, amplifying the effect of clustering.

For our calculations in this section, we first isolate the impact of weighted edges by taking

a homogeneous population and using Tuv = 1− exp(−αwuv). We vary α in order to set 〈T 〉.

We then investigate a heterogeneous population using equation (1) with the distributions of

table 1.

Results for the homogeneous population are shown in figure 12. It is straightforward to

show that P = A for this population. If edge weights were independent, then the value of

R0 would match with figure 2 and P and A would match with figure 7. We see, however,

that R0 is significantly reduced from the homogeneous unweighted population (but R0,1

remains a good approximation). Close to the threshold the probability and size are mildly

reduced. These observations are consistent with our expectation that clustering should be

accentuated by incorporating edge weights. In effect the disease spreads on a subnetwork of

the original network, with lower weighted edges removed and higher transmissibility on the

remaining edges. Although the predictions for P and A are not far off, we expect that they

would improve if we adjusted the degree distribution to match that of the effective network

on which the disease spreads.

When the population is moderately heterogeneous (figure 13), we still find that R0,1 is

a reasonable approximation to the true value of R0, however, it slightly underestimates R0
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Figure 12: Calculations for the weighted EpiSimS network with a homogeneous population.

If the weights were independently distributed, these would match figures 2 and 7.

as 〈T 〉 grows. Unfortunately the analytic calculation of R0,1 is much more difficult, and so

it is more appropriate to use simulations to estimate its value. If there were no correlation

between weights of different edges, then the calculation would reduce to that of the previous

section.

When we consider P and A in figure 14, we find that the primary difference with figure 10

is caused by the variation in edge weights smoothing out the extremes of the heterogeneities.

The out-transmissibility of the less-infectious nodes is raised by the large edge weights, while

the out-transmissibility of the more-infectious nodes is lowered by the small edge weights.

We find that the error in the estimate from the unclustered theory is much larger than

before. This is because we have combined two effects (edge weights and heterogeneity) that

both accentuate the impact of clustering. In spite of this, the predicted size and probability

of epidemics are not far off, and the direction of the error is consistent: the unclustered

prediction is always an overestimate.

5.1 Discussion

The inclusion of edge weights complicates the analysis considerably. Because of the difficulty

of quantifying the edge weight correlations, it is no longer easy to calculate the value of R0,1

analytically. It may be calculated numerically, giving a result which is consistent with R0,g

at higher g. The analytic approximations of P and A are still reasonable, but they are

nonetheless substantially worse than those found ignoring edge weights.

In general, we find that with regards to R0, edge weights behave much like heterogeneities
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Figure 13: R0,g with heterogeneous transmissibility and weighted edges on the EpiSimS

network.

Figure 14: Comparison of the simulated probability and size (symbols) with predictions

assuming unclustered networks with the same distribution of edge weights (curves). The

sharp corners seen in figure 10 are smoothed out.
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in that they accentuate the impact of clustering. If we were to eliminate those edges with

very low weight, the impact on R0 would be relatively small because few infections cross

those edges. We anticipate that using the new smaller network would improve the predictions

made.

With regards to P and A, edge weights act primarily to modify the distributions of

in- and out-transmissibility. The predictions made without clustering remain quite close.

However, the impact of clustering is larger with edge weights because the edges with higher

weights tend to be clustered.

6 Discussion

We have investigated the interplay of clustering, node heterogeneity, and edge weights on

the growth, probability, and size of epidemics in social networks. For unclustered networks

with independently distributed edge weights, it is possible to analytically predict all these

quantities. For a wide range of heterogeneities and clustering, we can accurately predict R0,

P, and A.

If the typical degrees are not small, then for a given average transmissibility and degree

distribution:

• The dominant effect controlling the growth rate of epidemics is clustering. Increased

clustering reduces the growth rate of epidemics.

• The dominant effect controlling the probability of epidemics is heterogeneity in infec-

tiousness. Increased heterogeneity reduces the probability of epidemics.

• The dominant effect controlling the size of epidemics is heterogeneity in susceptibility.

Increased heterogeneity reduces the size of epidemics.

When clustering and heterogeneities are mixed together, the values of P and A are only

mildly reduced by clustering — clustering does not significantly enhance the impact of het-

erogeneities — but the impact of clustering on reducing growth rate is enhanced by hetero-

geneities. This enhancement occurs because the probability of following all edges of a cycle

is increased if some of the edges are correlated due to the heterogeneity.

When typical degrees are not small, the probability and size of epidemics are well-

approximated by their values for unclustered networks, and so may be closely estimated
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analytically. The analytic calculation for P in unclustered networks depends only on degree

distribution and Qout, while the analytic calculation for A depends only on degree distri-

bution and Qin. If heterogeneity is large, clustering may play a small role in moving the

epidemic threshold, but otherwise its effect on the threshold is negligible. In networks with

small typical degree, it has been observed that clustering can modify the size or probability

of epidemics [32, 31], which is consistent with our estimates.

If edge weights are included, but are independently distributed, then their impact is

in modifying the distribution Qin of in-transmissibility and the distribution Qout of out-

transmissibility. The resulting modification may be calculated explicitly, and edge weights

have no further effect. If edge weights are correlated however, they have a more important

role in governing the behavior of epidemics, particularly if higher weight edges tend to be

the clustered edges. If this happens, then the impact of clustering is enhanced, and the

growth rate of epidemics is reduced compared to what it would be without the edge weight

heterogeneity.

We find that the growth rate is well-predicted by R0,1 = E[N2]/E[N1]. This may be

calculated analytically in the homogeneous case. When heterogeneities are included, the cal-

culation becomes harder, and when edge weights are included it becomes largely intractable.

However, these are easily calculated through simulation.

Among other conclusions, these observations show that using R0 to predict the final size

will generally be inadequate. In a homogeneous, but clustered, population R0 is reduced, but

the final size is unaffected, and so predictions of final size based on R0 will be too small. In

networks which are not clustered, but have heterogeneities in susceptibility, R0 is unaffected,

but the final size is substantially reduced. Consequently, the final size predicted from R0

will be too large.

Perhaps the most important conclusion we have found about clustering is that it plays

an important role in altering the growth of an epidemic, but it only plays a small role in

determining whether an epidemic may occur or how big it would be. If the relevant question

is, “how likely is an epidemic and large would it be?” then the modeler may proceed ignoring

clustering. If however, the question is “how fast will an epidemic grow?” then clustering must

be considered, but only enough to calculate R0,1.

Our results have a number of implications for designing intervention strategies. A num-

ber of strategies are available to control epidemic spread, ranging from travel restrictions,

quarantines, and vaccination. An obvious question is whether it is more effective to reduce
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long-range contacts or all contacts to control a new contagious disease. These results suggest

that reducing the number of long-range contacts will not be more effective than reducing

close-range contacts for controlling the size of epidemics. However, the rate at which an

epidemic grows will be significantly reduced by eliminating long-range contacts. So at an

early stage, travel restrictions can be very important in slowing the spread of an epidemic

until other interventions can be put into place, but without other interventions, they will

have no long-term effect.

To find strategies which help reduce the probability or size of epidemics, we see that

modifying the clustering does not help much. However, modifying the heterogeneity in

infectiousness or susceptibility can be important. Consider a choice between vaccinating

all individuals with a vaccine that reduces Tuv by a factor of 1/2 for all pairs u and v or

a contact tracing strategy which will remove 1/2 of all new infections before they have a

chance to infect anyone. Both strategies reduce 〈T 〉 by a half. However, the first reduces Tout

uniformly, while the second increases heterogeneity in Tout. Thus if we have the choice of

the two strategies, contact tracing is more likely to eliminate the disease before an epidemic

can happen. If our choice is instead between a global vaccine reducing Tin by a factor of

1/2 for all individuals, or a completely effective vaccine which is only available for 1/2 of the

population, the latter choice will be more effective for reducing the size of an epidemic.
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A Epidemic Percolation Networks

In this appendix, we describe the Epidemic Percolation Network (EPN), a tool which allows

us to consider an epidemic as a static object rather than a dynamically changing process.

This eases the understanding of certain key features and provides an improved technique

to efficiently estimate the probability of an epidemic. A sample EPN for an Erdős–Rényi
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Figure 15: The underlying network for figure 1 and an EPN which leads to the same outbreak.

Nodes in the Gscc are denoted by large circles, nodes in the Gin (but not in the Gscc) are

denoted by hexagons, nodes in the Gout (but not in the Gscc) are denoted by triangles, and

nodes not in any of these components are denoted by small circles.

network of average degree 3 and T = 0.4 is shown in figure 15.

Typically to estimate the probability that an introduced case sparks an epidemic in

an SIR model, many Monte Carlo simulations are performed. This process is slow and it

takes many iterations to have confidence in the results. Representative results from 500

such simulations are found in figure 16. Note that there is considerably more noise in the

calculation of the probability than there is in the calculation of the attack rate.

Figure 16: Probability and size of epidemics in an Erdős–Rényi network of 105 nodes and

〈k〉 = 4. Theory (curves) compare well with results of 500 simulations (symbols). We take

Tuv = 1 − exp(−αIuSv), with distributions of I and S as given in table 1.

Instead we generate a single EPN E . We first assign I and S to each node and (if
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Figure 17: Same as figure 16, but calculated through a single EPN for each T . The noise is

substantially reduced in the P calculations, but slightly increased in the A calculations.

necessary) w to each edge. Then for each node u and each neighbor v we calculate Tuv and

place a directed edge from u to v into E with probability Tuv. The out-components of a

given node has exactly the same distribution as the final outbreak following an introduced

infection of that node in the original epidemic model.

If E contains a giant strongly-connected component Gscc with in-component Gin and

out-component Gout such that Gin ∩ Gout = Gscc, then an epidemic is possible. If the index

case is in Gin, all nodes in Gout are infected. This may be seen by comparing the EPN in

figure 15 with the outbreak shown in figure 1. It is possible that a small number of other

nodes outside of Gout are infected, but the proportion of such nodes is negligible as |G| → ∞.

Thus in the limit of large networks, the probability of an epidemic is well-approximated

by P = |Gin|/|G| while the fraction infected is well-approximated by A = |Gout|/|G|. This

observation allows us to estimate the probability of an epidemic from a single EPN (figure 17),

rather than from hundreds of simulations (figure 16). The error in P and A from a single

EPN is O(log N/N), and so in a large population a single simulation will provide a sufficiently

good estimate.

B The reproductive ratio

In this appendix we provide examples demonstrating the need of the more careful definition

of R0 in section 2.1.3, and we explore properties of this definition.

A pair of simple examples demonstrates the difficulties with the standard definition. In
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our first example, the standard definition suggests no epidemic is possible (R0 < 1), while in

fact they are. In our second example, the standard definition suggests epidemics are possible

(R0 > 1), while in fact they are not.

For the first example, consider a population of |G| ≫ 1 nodes, all connected with each

other. Add to that population 3|G| isolated nodes. Now consider a disease for which T =

3/|G| . A node in the connected component will infect on average 3 nodes, while an isolated

node will infect none. On average therefore, a random index case infects 0.75 other nodes.

Under the standard definition R0 = 0.75 and epidemics are impossible. However, if the

index case is in the connected component, the introduction is likely to lead to an epidemic.

Alternately, consider a population of |G| nodes with each node having three neighbors.

For simplicity we assume no short cycles. Assume that a disease spreads with probability

p ∈ (1/3, 1/2) to a given neighbor. The average number of secondary infections caused by a

single introduced infection is 3p > 1, giving R0 > 1 under the standard definition. However,

each secondary infection has only two susceptible neighbors, and so infects on average 2p < 1

neighbors, and the outbreak dies out.

Some of these issues have been dealt with by [8], who considered compartmental determin-

istic models of several types of individuals. At early time nonlinear terms are unimportant,

and the profile of the infected population aligns with the eigenvector of a given matrix. In

stochastic settings, the same alignment occurs, but it may do so more quickly or slowly

than predicted and for some realizations it may instead die out. To make a more rigorous

definition of R0, we turn to statements about the average. We set

R0,g =
E[Ng+1]

E[Ng]

to be the ratio of the expected number of infections in generation g + 1 to the expected

number in generation g. This value is affected by local small-scale structures. If the network

is small, it is also affected by the finite size of the network, but if the network is large enough

relative to g, we expect that the value will be unaffected by large-scale structure. In more

concrete terms, the early growth of a disease in a suburb is unaffected by whether that

suburb is part of a city of 100000, 1 million, or 10 million. As the disease spreads out of

the suburb, the effect of the finite city size will be noticeable for the smaller cities first. If

the population is large enough, the ratio converges before the finite size has any impact. We

define R0 mathematically as

R0 = lim
g→∞

lim
|G|→∞

R0,g . (17)
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Figure 18: A comparison of the convergence of R0,g, E[Ng+1/Ng], and E[Ng+1]
1/g+1 for

epidemics in the EpiSimS network (T = 0.075), an unclustered bimodal network (T = 0.3

with each node’s degree coming either from a Poisson distribution peaked at 3 or a Poisson

distribution peaked at 6), and an Erdős–Rényi network (T = 0.3, average degree 4). The

calculations used 100000 simulations for each network.

This definition is similar to that of [33], who used

R̂g = E[Ng+1]
1/g+1

R0 = lim sup
g→∞

lim sup
|G|→∞

R̂g , (18)

which is the limit as g → ∞ of the geometric mean of R0,1, . . . ,R0,g−1 (assuming the limit

exists). This definition is more general and will converge in some cases where (17) does not.

However, if (17) does converge (and typically we see that it does), then it reaches the same

value, but does so after fewer generations. So to clearly see R0 from (18), we must have a

larger network.

Another suitable definition would be

r̂g = E[Ng+1/Ng]

R0 = lim
g→∞

lim
|G|→∞

r̂g , (19)

where the expectation is taken over realizations with Ng 6= 0. This will tend to require more

generations to converge because it counts small outbreaks equally with large outbreaks, and

so outbreaks which have not yet grown and are dominated by stochastic effects would be as

important to the average as well-established epidemics.

A comparison of these three definitions of R0 is shown in figure 18. They all result in

similar values for R0. For a clustered network, equation (17) converges more quickly. For

large unclustered networks, R0,g = r̂g and both converge to R0 at g = 1 while R̂g takes

longer. In an Erdős–Rényi network, all three definitions give R0 for all generations; only

noise due to insufficient simulations affects the calculation.
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To be fully rigorous, the |G| → ∞ limit must be appropriately defined. It does not

make sense to talk about |G| → ∞ for a given network, and we cannot simply add nodes

to the pre-existing network. We must take a sequence of networks in such a way that the

small-scale structure is preserved, and as the network size grows, the size of the preserved

structure increases.

To make this rigorous, we follow [25]. Take a sequence of finite networks Gn, with

|Gn| → ∞ as n → ∞. We define Bg to be the network induced on the set of nodes within

distance g of a central node. The sequence of networks is taken so that the probability that

the structure surrounding a randomly chosen central node is isomorphic to a given Bg is the

same for all Gn if n ≥ g. This means that the small-scale structure in the different networks

is the same, and the size of what is considered “small-scale” increases with n.

We finally note that although the |G| → ∞ limit may be well-defined, it is possible that

the g → ∞ limit in (17) does not converge. This may occur because, for example, growth

within a neighborhood may happen at one rate, while spread between neighborhoods in a

suburb may happen at another, and spread between suburbs in a city may happen at yet

another. If the rate of spread continues to change as the grouping size changes, then the

g → ∞ limit may not exist. An effect analogous to this may appear in [1] which considered

disease spread in Italy. Two distinct growth rates are seen depending on whether the disease

is spreading in the general country or in Rome.

C The EpiSimS Network

We consider a network produced by EpiSimS for Portland, Oregon [7, 10, 3]. This simulation

uses Census data, road structure, building locations, and population surveys to construct a

virtual population which travels through the city. From the activity of individuals in the

simulation, we may reconstruct who was in contact with whom and for how long.

There are 1615860 nodes in the network, of which 1591010 are in the giant component.

The average degree is approximately 16, and the average squared degree is approximately

359. The degree distribution has an exponential tail, and clustering is concentrated in the

low-degree nodes. For our approximations of R0, we also need information about length 2

paths. We calculate the number of pairs of nodes with each value of nuv for which χuv = 0

and χuv = 1. Large values of nuv are more frequent when χuv = 1. The distribution of edge

weights is fairly broad. Many contacts are very short, but the number of long contacts is
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Figure 19: Properties of the EpiSimS network. For the final plot, contact times are binned

in quarter hour increments, but exact values were used in calculations.

not negligible.
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[32] M. Ángeles Serrano and Marián Boguñá. Percolation and epidemic thresholds in clus-

tered networks. Physical Review Letters, 97(8):088701, 2006.

[33] Pieter Trapman. On analytical approaches to epidemics on networks. Theoretical Pop-

ulation Biology, 71(2):160–173, 2007.

[34] DJ Watts and SH Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393(6684):409–410, 1998.

38


	Introduction
	Formulation
	The disease model
	Transmissibility
	Epidemic percolation networks
	The basic reproductive ratio
	The networks

	Epidemics in unclustered networks
	The basic reproductive ratio
	Probability and size
	Summary


	Epidemics in clustered networks with homogeneous transmissibility
	The basic reproductive ratio
	Epidemic probability and size

	Epidemics in clustered networks with heterogeneous transmissibility
	The basic reproductive ratio
	Probability and size

	Epidemics in clustered networks with weighted edges
	Discussion

	Discussion
	Epidemic Percolation Networks
	The reproductive ratio
	The EpiSimS Network

